

High Speed IEEE 754 Floating Point Multiplier using

Different Types of Adder

Anekant Jain* and Mr. Manish Saxena**
* M. Tech. Scholar, Department of ECE, BIST Bhopal, India

anekantjain18@gmail.com
** Asst. Professor, Department of ECE, BIST Bhopal, India

manish.saxena2008@gmail.com

Abstract: Due to advancement of new technology in the field of VLSI and Embedded system, there is an increasing demand
of high speed and low power consumption processor. Speed of processor greatly depends on its multiplier as well as adder
performance. In spite of complexity involved in floating point arithmetic, its implementation is
increasing day by day. Due to which high speed adder architecture become important. Several adder architecture designs
have been developed to increase the efficiency of the adder. In this paper, we introduce an architecture that performs
high speed IEEE 754 floating point multiplier using carry select adder (CSA). Here we are introduced two carry select
based design. These designs are implementation Xilinx Vertex device family.

Keywords: IEEE754, Single Precision Floating Point (SP FP), Double Precision Floating Point (DP FP), Binary to Execess-1
(), PAD1.

Introduction
The real numbers represented in binary format are known as floating point numbers. Based on IEEE-754 standard, floating
point formats are classified into binary and decimal interchange formats. Floating point multipliers are very
important in dsp applications. This paper focuses on double precision normalized binary interchange format. Figure 1 shows
the IEEE-754 double precision binary format representation. Sign (s) is represented with one bit, exponent (e) and
fraction (m or mantissa) are represented with eleven and fifty two bits respectively. For a number is said to be a
normalized number, it must consist of'one' in the MSB of the significand and exponent is greater than zero and smaller than
1023. The real number is represented by equations (i) & (2).

Z  (1s)  2 (E  Bias)  (1.M) (1)

Value  (1signbit)  2(Exponent1023)  (1.Mantissa) (2)

Biasing makes the values of exponents within an unsigned range suitable for high speed comparison.
In computing, floating point describes a system for representing real numbers which supports a wide range
of values. Numbers are in general represented approximately to a fixed number of significant digits and scaled using an
exponent. The base for the scaling is normally 2, 10 or 16. The typical number that can be represented exactly is of the form:

Significant digits × base exponent

The term floating point refers to the fact that the radix point (decimal point, or, more commonly in computers, binary
point) can "float"; that is, it can be placed anywhere relative to the significant digits of the number. This position is indicated
separately in the internal representation, and floating-point representation can thus be thought of as a computer realization of
scientific notation. Over the years, several different floating-point representations have been used in computers;
however, for the last ten years the most commonly encountered representation is that defined by the IEEE 754
Standard.
The advantage of floating-point representation over fixed- point (and integer) representation is that it can support a much
wider range of values. For example, a fixed-point representation that has seven decimal digits with two decimal
places, can represent the numbers 12345.67, 123.45, 1.23 and so on, whereas a floating-point representation (such as the
IEEE 754 decimal32 format) with seven decimal digits could in addition represent 1.234567, 123456.7,

170 IDES joint International conferences on IPC and ARTEE - 2017

0.00001234567,
1234567000000000, and so on. The floating-point format needs slightly more storage (to encode the position of the radix
point), so when stored in the same space, floating-point numbers achieve their greater range at the expense of precision.
The speed of floating-point operations is an important measure of performance for computers in many application domains.
It is measured in FLOPS.

Figure 1: IEEE 754 Single Precision and Double Precision Floating Point Format

IEEE 754 STANDARD FLOATING POINT MULTIPICATION ALGORITHM
A brief overview of floating point multiplication has been explained below [5-6].

 Both sign bits S1, S2 are need to be Xoring together, then the result will be sign bit of the final product.
 Both the exponent bits E1, E2 are added together, then subtract bias value from it. So, we get exponent field of the

final product.
 Significand bits Sig1 and Sig2 of both the operands are multiply including their hidden bits.
 Normalize the product found in step 3 and change the exponent accordingly. After normalization, the leading

“1 “will become the hidden bit.
Above algorithm of multiplication algorithm is shown in Figure 2.

Figure 2: IEEE754 SP FP and DP FP Multiplier Structure, NE: Normalized exponent, NS: Normalized Significand

IEEE-754 standard is s standard representation established by IEEE and widely used standard for floating point computation.
Single precession floating point represents computer format and it occupies 32-bits in a computer memory and represents
a wide range of values by using a floating point. In IEEE 754-
2008, the 32-bit with base 2 formats [2][6] is referred as single precision or binary 32.
The standard basically has four types and they are

 Arithmetic format: it is a set of binary and decimal floating point numbers which has finite numbers that
contains signed zero, subnormal and infinite numbers and special value called” not a number”(NaN).

 Interchange format: it is a bit string or encodings that are mainly used to exchange floating point data in a
compact and efficient form.

 Rounding rules: properties should be satisfied while doing arithmetic operations and conversion of any
numbers on arithmetic formats.

 Exception handling: It indicates any exceptional conditions like overflow, underflow etc., while doing operations.

Some other computer representations for non-integral numbers
Floating-point representation, in particular the standard IEEE format, is by far the most common way of representing an
approximation to real numbers in computers because it is efficiently handled in most large computer processors. However,
there are alternatives:

High Speed IEEE 754 Floating Point Multiplier using Different Types of Adder 171

 Fixed-point representation uses integer hardware operations controlled by a software implementation of a specific
convention about the location of the binary or decimal point, for example, 6 bits or digits from the right. The
hardware to manipulate these representations is less costly than floating- point and is also commonly used to
perform integer operations. Binary fixed point is usually used in special- purpose applications on embedded
processors that can only do integer arithmetic, but decimal fixed point is common in commercial applications.

 Binary-coded decimal is an encoding for decimal numbers in which each digit is represented by its own binary
sequence.

 Logarithmic number systems represent a real number by the logarithm of its absolute value and a sign bit. The value
distribution is similar to floating-point, but the value-to- representation curve, i. e. the graph of the logarithm
function, is smooth (except at 0). Contrary to floating-point arithmetic, in a logarithmic number system
multiplication, division and exponentiation are easy to implement but addition and subtraction are hard.

 Where greater precision is desired, floating-point arithmetic can be implemented (typically in software) with
variable- length significands (and sometimes exponents) that are sized depending on actual need and depending on
how the calculation proceeds. This is called arbitrary-precision arithmetic.

 Some numbers (e.g., 1/3 and 0.1) cannot be represented exactly in binary floating-point no matter what the
precision. Software packages that perform rational arithmetic represent numbers as fractions with integral
numerator and denominator, and can therefore represent any rational number exactly. Such packages generally need
to use "bignum" arithmetic for the individual integers.

 Computer algebra systems such as Mathematica and Maxima can often handle irrational numbers like or 31/2 in a
completely "formal" way, without dealing with a specific encoding of the significand. Such programs can evaluate
expressions like " " exactly, because they "know" the underlying mathematics.

Ieee-754 Floating Point Format
IEEE is a technically used standard followed by many hardware and software implementation. Single precision floating point
standard represents 32bits (4bytes) in computer number format, most significant bit will start from left this single precision is
having three basic components sign, exponent and mantissa sign bit width is 1 bit, exponent of width is 8bits and mantissa of
24 bits out of which 23 bits are explicitly stored [6] and 1 bit is implicitly stored, sign bit is used represent sign of floating
point number where sign(s=o positive numbers=1 negative number)
The Number representation of single precession [9]. Value = (-1) s *2E-127 * 1.M (normalized) when E>0 S= sign bit (0 for
positive, 1 for negative) e=unbiased exponent; e=E-127(bias) E=exponent it can be signed or unsigned integer, 8-bit signed
integer it ranges from128 - = ݅ܧ to 127= ݔܽܧ(2’compliment) and for unsigned it ranges
from ݁݅ =0 to 255= ݔܽܧ which is the accepted biased form in IEEE 754 single precession. In this exponent with value 127
represents actual zero. The true mantissa will have 23 fraction bits to the right of binary point and implicit to left of binary
point with value 1unless exponent bit is stored with zeros. In memory we can see only 23 fraction bits in mantissa even
though it has 24bit.If E>0 and E.

Representable numbers, conversion and rounding
By their nature, all numbers expressed in floating-point format are rational numbers with a terminating expansion in the
relevant base (for example, a terminating decimal expansion in base-10, or a terminating binary expansion in base-
2).
Irrational numbers, such as π or √2, or non-terminating rational numbers, must be approximated. The number of digits (or
bits) of precision also limits the set of rational numbers that can be represented exactly. For example, the number
123456789 clearly cannot be exactly represented if only eight decimal digits of precision are available. When a number is
represented in some format (such as a character string) which is not a native floating-point representation supported in a
computer implementation, then it will require a conversion before it can be used in that implementation. If the number can be
represented exactly in the floating-point format then the conversion is exact. If there is not an exact representation then the
conversion requires a choice of which floating-point number to use to represent the original value. The representation chosen
will have a different value to the original, and the value thus adjusted is called the rounded value.
Whether or not a rational number has a terminating expansion depends on the base. For example, in base-10 the number 1/2
has a terminating expansion (0.5) while the number 1/3 does not (0.333...). In base-2 only rationals with denominators that
are powers of 2 (such as 1/2 or 3/16) are terminating. Any rational with a denominator that has a prime factor other than 2
will have an infinite binary expansion. This means that numbers which appear to be short and exact when written in decimal
format may need to be approximated when converted to binary floating-point. For example, the decimal number 0.1 is not
representable in binary floating-point of any finite precision; the exact binary representation would have a "1100" sequence
continuing endlessly:
e = −4; s = 1100110011001100110011001100110011..., where, as previously, s is the significand and e is the

172 IDES joint International conferences on IPC and ARTEE - 2017

exponent.
When rounded to 24 bits this becomes e = −4; s = 110011001100110011001101,
which is actually 0.100000001490116119384765625 in decimal.
As a further example, the real number π, represented in binary as an infinite series of bits is

11.00100100001111110110101010001000100001011010001 10000100011010011... but is 11.0010010000111111011011
when approximated by rounding to a precision of 24 bits. In binary single-precision floating-point, this is represented as s =
1.10010010000111111011011 with e = 1.
This has a decimal value of 3.1415927410125732421875, whereas a more accurate approximation of the true value of π
Is 3.1415926535897932384626433832795...

The result of rounding differs from the true value by about 0.03 parts per million, and matches the decimal representation of
π in the first 7 digits. The difference is the discretization error and is limited by the machine epsilon.
The arithmetical difference between two consecutive representable floating-point numbers which have the same
exponent is called a unit in the last place (ULP). For example, if there is no representable number lying between the
representable numbers 1.45a70c22hex and 1.45a70c24hex, the ULP is 2×16−8, or 2−31. For numbers with an exponent of 0,
a ULP is exactly 2−23 or about 10−7 in single precision, and about 10−16 in double precision. The mandated behavior of
IEEE-compliant hardware is that the result be within one-half of a ULP.

Literature Review
Soumya Havaldar et al. [1], gives an FPGA Based High Speed IEEE-754 Double Precision Floating Point Multiplier
Using Verilog. This paper has implemented DPFP Multiplier using parallel Adder. A high speed floating point double
precision multiplier is implemented on a Virtex-6 FPGA. In addition, the proposed design is compliant with IEEE-754 format
and handles over flow, under flow, rounding and various exception conditions. The design achieved the operating
frequency of 414.714 MHz with an area of 648 slices.

Ragini Parte et al. [2], IEEE point number-crunching has an immense application in DSP, advanced PCs, robots because of
its capacity to speak to little numbers and huge numbers and in addition marked numbers and unsigned numbers.
Disregarding unpredictability included in gliding point number juggling, its usage is expanding step by step. Here we break
down the impacts of utilizing three unique sorts of adders while figuring the single accuracy and twofold exactness skimming
point increase. We additionally exhibit the increase of significand bits by disintegration of operands strategy for IEEE 754
standard.

Ross Thompson et al. [3], IEEE-754 determines trade and number juggling positions also, routines for paired and
decimal drifting point number juggling in PC programming world. The execution of a skimming point framework utilizing
this standard should possible completely in programming, or in equipment, or in any blend of programming and equipment.
This venture propose VHDL execution of IEEE - 754 Floating point unit .In proposed work the pack, unload and adjusting
mode was actualized utilizing the VHDL dialect and reenactment was checked.
In this proposition work, DPFP Multiplier alongside SPFP Multiplier has been actualized with four ordinary Adders (PA,
CSKA, CSA, and CSABEC). Think about their Results and CSA is known not the speediest snake among every single
customary viper. Be that as it may, CSA involves more territory as it has two parallel circuits to include the same bits yet
with diverse convey data. As CSA figures the whole without sitting tight for the transitional conveys to spread stage by
stage. Finally it is the obligation of multiplexer to pick and give the last right yield. CSABEC is an adjusted adaptation of
CSA in which one of the parallel circuits is supplanted by the arrangement of Binary to Excess-1 Converters
circuit (BECs). It is turned out to be an awesome way to deal with decrease the territory.

Different Types of Adder

Parallel Adder
Parallel adder can add all bits in parallel manner i.e. simultaneously hence increased the addition speed. In this adder
multiple full adders are used to add the two corresponding bits of two binary numbers and carry bit of the previous adder. It
produces sum bits and carry bit for the next stage adder. In this adder multiple carry produced by multiple adders are
rippled, i.e. carry bit produced from an adder works as one of the input for the adder in its succeeding stage. Hence
sometimes it is also known as Ripple Carry Adder (RCA). Generalized diagram of parallel adder is shown in figure 3.

High Speed IEEE 754 Floating Point Multiplier using Different Types of Adder 173

Entitle of paper Approached
used

Software Paramet
er

Published
Year

Design of
Vedic IEEE
754 Floating
Point
Multiplier

IEEE 754
floating
point
multiplier
using Vedic
Multiplier

Xilinx
12.1 i

Slice =
305,

LUT=
598

IEEE 2016

Analysis
 of
Effects of using
Exponent Adders
in IEEE- 754
Multiplier by
VHDL

IEEE 754
floating
point
multiplier
using Carry
select adder

Verilog
using the

Model
SIM SE

6.3

Slice =
353,

LUT=
610

IEEE 2015

An IEEE 754
Double-
Precision
Floating-
Point
Multiplier for
Denormalized
and
Normalized
Floating-
Point
Numbers

IEEE 754
floating
point
multiplier
using
floating
number

Xilinx

Spartan

3E

4vqg100

Slice =

453,

LUT=

678

IEEE 2015

Table 1: Summary of Literature Review

Figure 3: Parallel Adder (n=7 for SPFP and n=10 for DPFP)

An n-bit parallel adder has one half adder and n-1full adders if the last carry bit required. But in 754 multiplier’s exponent
adder, last carry out does not required so we can use XOR Gate instead of using the last full adder. It not only reduces the
area occupied by the circuit but also reduces the delay involved in calculation. For SPFP and DPFP multiplier’s
exponent adder, here we Simulate 8 bit and 11 bit parallel adders respectively as show in figure 4.

Figure 4: Modified Parallel Adder (n=7 for SPFP and n=10 for DPFP)

174 IDES joint International conferences on IPC and ARTEE - 2017

Carry Skip Adder
This adder gives the advantage of less delay over Ripple carry adder. It uses the logic of carry skip, i.e. any desired carry can
skip any number of adder stages. Here carry skip logic circuitry uses two gates namely “and gate” and “or gate”. Due to
this fact that carry need not to ripple through each stage. It gives improved delay parameter. It is also known as Carry bypass
adder. Generalized figure of Carry Skip Adder is shown in figure 5.

Figure 5: Carry Skip Adder

Carry Select Adder
Carry select adder uses multiplexer along with RCAs in which the carry is used as a select input to choose the correct output
sum bits as well as carry bit. Due to this, it is called Carry select adder. In this adder two RCAs are used to calculate the sum
bits simultaneously for the same bits assuming two different carry inputs i.e. ‘1’ and ‘0’. It is the responsibility of
multiplexer to choose correct output bits out of the two, once the correct carry input is known to it. Multiplexer delay is
included in this adder. Generalized figure of Carry select adder is shown in figure 3.9. Adders are the basic building blocks of
most of the ALUs (Arithmetic logic units) used in Digital signal processing and various other applications. Many types of
adders are available in today’s scenario and many more are developing day by day. Half adder and Full adder are the two
basic types of adders. Almost all other adders are made with the different arrangements of these two basic adders only. Half
adder is used to add two bits and produce sum and carry bits whereas full adder can add three bits simultaneously and
produces sum and carry bits.

Figure 6: Carry Select Adder

High Speed IEEE 754 Floating Point Multiplier using Different Types of Adder 175

Carry Select Adder with Binary to Excess-1Converter (CSABEC)
The basic design of CSA has two parallel and same type of circuits of RCA (Ripple Carry Adder) which add the same bits
but with different carry inputs. In this paper we have introduced a modified version of CSA with the objective to reduce
area occupied by the circuit and delay involved in calculation. In this circuit, one of the parallel circuit of CSA is replaced
be Binary to Excess-1 Converter (BEC). We have implemented these adders in exponent addition of IEEE 754 floating point
multiplication. 8 bit, 11 bit and 3 bit CSABEC adders has been shown in figure 5 [a], [b] and [c] respectively.

(a) 8 bit CSABEC

(b) 11 bit CSABEC

(c) 3 bit CSABEC

Figure 5 : Carry Select Adder Binary to Excess-1 Conveter

176 IDES joint International conferences on IPC and ARTEE - 2017

FIGURE 7: (b)n bit PAD 1 (n=7 and n=10 for

(a) 8 bit MCBL

FIGURE 6 : Carry Select Adder with Common Boolean

Manju-et al explains 16-bit Carry Select Adder with Common Common Boolean Logic (CBL), here we have proposed a
new adder and call it as Modified Common Boolean Logic Adder (PAD 1). In this adder as shown in figure, we have
basic building block of a XOR Gate, a AND Gate, a OR Gate, an inverter and two 2:1 multiplexers. For every two bit
addition, required so we need 8 such blocks. We can understand a single block in two parts, a sum bit generator part and a
carry bit generator part as shown in figure 6(a). As the carry out of last bit is not required, we can remove the carry

High Speed IEEE 754 Floating Point Multiplier using Different Types of Adder 177

generator part of the last block used. It not only reduces the gate count but also reduces the delay involved in calculation.
Likewise in DPFP Multiplier 11 blocks are applied, last block only with sum bit generator. This adder recognized as PAD
1 in this paper [5]. Detailed structure of CBL has been shown in figure 7 [a]

Proposed Adder 2 (PAD 2)
Kogge-Stone Adder has named after Peter M. Kogge and Harold S. Stone who has proposed this adder. It is also known by
the name parallel prefix adder. This adder provides carry signal in very less time [6]. We have proposed an efficient design of
Kogge-stone adder which shows very significant reduction in area occupied and delay involved in summation. Eventually,
proposed KSA provides very efficient method to calculate exponent bits in IEEE 754 multiplication. We have introduced as
Proposed Adder 2 (PAD2), which uses the logic of Kogge-stone adder. We have designed this adder by using cascaded
arrangement of half adders and XOR Gates as shown in figure [8]. We have simulated a 8-bit KSA for IEEE 754 SPFP
multiplication and a 11-bit KSA for IEEE 754 DPFP multiplication.
For exponent addition in IEEE 754 multiplication, we have checked the results of applying conventional adders, CSA and its
modified versions (CSABEC) .Also we have checked the performances of PAD 1 and PAD 2 which has been proven to be
the better options among all. Multiplication of Mantissa bits has been done with the splitting off the operands method
because of the large size of the Mantissa bits.

FIGURE 8: (b) PAD1 (n=7 for SPFP and n=10 for DPFP)

Significand Bit Calculation
As per the format defined by IEEE 754, significand bits of SPFP and DPFP are 23 bits and 52 bits which are the normalized
bits and excludes the initial ‘1’ known as the hidden bit. While calculating the resultant significand bits of the
multiplication of two SPFP or DPFP numbers, significand bits needs to multiplied but considering the hidden one along with
the significand bits. So now the significand bits of SPFP and DPFP becomes 24 bits and 53 bits respectively. This large size
of Mantissa bits has made the multiplication procedure more complex. Here we use the technique of operand decomposition
to reduce the complexity and ensure the accuracy. 24 and 53 bits are need to be break down into groups. Each group of
the first operand is multiplied with each one group of the other operand. Let the first operand is grouped into n groups
and second operand is grouped into m groups then eventually we get nm multiplication terms which are the partial product
terms of the final multiplication of the significant bits. These partial product terms have to added together very carefully by
shift and add method. Shifting has to done according to which group of the first operand is multiplied by which group of the
second operand. Final multiplication resultant bits are of size 48 and 106-bits of SPFP and DPFP respectively.
These bits need to be normalized first so that we get the least most ‘1’ which will become the hidden bit and not appear
in the result shown in the IEEE 754 floating point formats. Such a long size of the multiplication result makes it unsuitable to
store in IEEE 754 floating point format, so now these bits are truncated and round off to 23 bits and 52 bits.

Proposed Design
In IEEE754 standard floating point representation, 8 bit Exponent field in single precision floating point
(SP FP) representation and 11 bit in double precision floating point (DP FP) representation are need to add with another 8
bit exponent and 11 bit exponent respectively, in order to multiply floating point numbers represented in IEEE 754 standard
as explained earlier. Ragini et al. [10] has used parallel adder for adding exponent bits in floating point multiplication
algorithm. We proposed the use of 8-bit modified CSA with dual RCA and 8-bit modified CSA with RCA and BEC for
adding the exponent bits. We have found the improved area of 8-bit modified Carry select adder with RCA and BEC over the
8-bit modified CSA with dual RCA.

Sign bit calculation
To calculate the sign bit of the resultant product for SP FP and DP FP multiplier, the same strategy will work. We just need to
XOR together the sign bits of both the operands. If the resultant bit is ‘1’, then the final product will be a negative

178 IDES joint International conferences on IPC and ARTEE - 2017

number. If the resultant bit is ‘0’, then the final product will be a positive number.

Exponent bit calculation
Add the exponent bits of both the operands together, and then the bias value (127 for SPFP and 1023 for DPFP) is subtracted
from the result of addition. This result may not be the exponent bits of the final product. After the significand
multiplication, normalization has to be done for it. According to the normalized value, exponents need to be adjusted. The
adjusted exponent will be the exponent bits of the final product.

Significand bit calculation
Significand bits including the one hidden bit are need to be multiply, but the problem is the length of the operands.
Number of bits of the operand will become 24 bits in case of SP FP representation and it will be 53 bits in case of DP FP
representation, which will result the 48 bits and 106 bits product value respectively. In this paper we use the technique of
break up the operands into different groups then multiply them. We get many product terms, add them together carefully by
shifting them according to which part of one operand is multiplied by which part of the other operand. We have decomposed
the significand bits of both the operands ain four groups. Multiply each group of one operand by each group of second
operand. We get 16 product terms. Then we add all of them together very carefully by shifting the term to the left according
to which groups of the operands are involved in the product term.

Simulation Result
All the designing and experiment regarding algorithm that we have mentioned in this paper is being developed on Xilinx 6.2i
updated version. Xilinx 6.2i has couple of the striking features such as low memory requirement, fast debugging, and low
cost. The latest release of ISETM (Integrated Software Environment) design tool provides the low memory requirement
approximate 27 percentage low. ISE 6.2i that provides advanced tools like smart compile technology with better usage
of their computing hardware provides faster timing closure and higher quality of results for a better time to designing
solution.
These designs were compared with IEEE-754 floating point multiplier architecture proposed by Ragini et al. [2] to show for
the improvements obtained.
So Ragini et al. [2] architecture is best in all these architectures. Implementing the Ragini et al. [2], proposed
architecture IEEE-754 floating point design has been captured by VHDL and the functionality is verified by RTL and gate
level simulation. To estimate the number of slice, number of 4-i/p LUTs and maximum combinational path delay (MCPD).
By using this technique of break up the operands into different groups then multiply them I reduce all parameter compare to
my base paper.

Conclusion
IEEE754 standardize two basic formats for representing floating point numbers namely, single precision floating point and
double precision floating point. Floating point arithmetic has vast applications in many areas like robotics and DSP. Delay
provided and area required by hardware are the two key factors which are need to be consider Here we present single
precision floating point multiplier by using two different adders namely modified CSA with dual RCA and modified
CSA with RCA and BEC.
Among all two adders, modified CSA with RCA and BEC is the least amount of Maximum combinational path delay
(MCDP). Also, it takes least number of slices i.e. occupy least area among all two adders.

Refrences
[1] Soumya Havaldar, K S Gurumurthy, “Design of Vedic IEEE 754 Floating Point Multiplier”, IEEE International Conference On

Recent Trends In Electronics Information Communication Technology, May 20-21, 2016, India.
[2] Ragini Parte and Jitendra Jain, “Analysis of Effects of using Exponent Adders in IEEE- 754 Multiplier by VHDL”, 2015

International Conference on Circuit, Power and Computing Technologies [ICCPCT] 978-1-4799-7074- 2/15/$31.00 ©2015 IEEE.
[3] Ross Thompson and James E. Stine, “An IEEE 754 Double-Precision Floating-Point Multiplier for Denormalized

and Normalized Floating-Point Numbers”, International conference on IEEE 2015.
[4] B. Fagin and C. Renard, "Field Programmable Gate Arrays and Floating Point Arithmetic," IEEE Transactions on VLS1, vol. 2,

no. 3, pp. 365-367, 1994.
[5] N. Shirazi, A. Walters, and P. Athanas, "Quantitative Analysis of Floating Point Arithmetic on FPGA Based Custom

Computing Machines," Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines (FCCM"95), pp.155-162,
1995.

[6] Malik and S. -B. Ko, “A Study on the Floating-Point Adder in FPGAs”, in Canadian Conference on Electrical and Computer
Engineering (CCECE-06), (2006) May, pp. 86–89.

[7] D. Sangwan and M. K. Yadav, “Design and Implementation of Adder/Subtractor and Multiplication Units for
Floating-Point Arithmetic”, in International Journal of Electronics Engineering, (2010), pp. 197-203.

High Speed IEEE 754 Floating Point Multiplier using Different Types of Adder 179

[8] L. Louca, T. A. Cook and W. H. Johnson, “Implementation of IEEE Single Precision Floating Point Addition and Multiplication

on FPGAs”, Proceedings of 83rd IEEE Symposium on FPGAs for Custom Computing Machines (FCCM‟96), (1996), pp. 107–
116.

[9] [9] Jaenicke and W. Luk, "Parameterized Floating-Point Arithmetic on FPGAs", Proc. of IEEE ICASSP, vol. 2, (2001),
pp. 897-900.

[10] Lee and N. Burgess, “Parameterisable Floating-point Operations on FPGA”, Conference Record of the Thirty- Sixth Asilomar
Conference on Signals, Systems, and Computers, (2002).

[11] M. Al-Ashrafy, A. Salem, W. Anis, “An Efficient Implementation of Floating Point Multiplier”, Saudi International
Electronics, Communications and Photonics Conference (SIECPC), (2011) April 24-26, pp. 1-5.

