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Abstract: Due to advancement of new technology in the field of VLSI and Embedded system, there is an increasing demand 
of high speed and low power consumption processor. Speed of processor greatly depends on its multiplier  as  well  as  adder  
performance.  In   spite   of complexity involved in floating point arithmetic, its implementation is  
increasing day by day.   Due to which high speed adder architecture become important. Several adder architecture  designs 
have been developed to increase the efficiency  of  the  adder.  In  this  paper,  we  introduce  an architecture that performs 
high speed IEEE 754 floating point multiplier using carry select adder (CSA). Here we are  introduced  two  carry  select  
based  design.  These designs are implementation Xilinx Vertex device family. 
 
Keywords: IEEE754, Single Precision Floating Point (SP FP), Double Precision Floating Point (DP FP), Binary to Execess-1 
(), PAD1. 
 
Introduction 
The real numbers represented in binary format are known as floating point numbers. Based on IEEE-754 standard, floating 
point   formats   are   classified   into   binary   and   decimal interchange formats. Floating point multipliers are very 
important in dsp applications. This paper focuses on double precision normalized binary interchange format. Figure 1 shows 
the IEEE-754 double precision binary format representation. Sign (s) is represented with one bit, exponent (e) and 
fraction (m or mantissa) are represented with eleven and fifty two bits respectively. For a number is said to be a 
normalized number, it must consist of'one' in the MSB of the significand and exponent is greater than zero and smaller than 
1023. The real number is represented by equations (i) & (2). 
 

Z  (1s )  2 ( E  Bias)  (1.M )     (1) 
 

Value  (1signbit )  2( Exponent1023)  (1.Mantissa) (2) 
 
Biasing makes the values of exponents within an unsigned range suitable for high speed comparison. 
In   computing,   floating   point   describes   a   system   for representing  real  numbers  which  supports  a  wide  range  
of values. Numbers are in general represented approximately to a fixed  number  of  significant  digits  and  scaled  using  an 
exponent. The base for the scaling is normally 2, 10 or 16. The typical number that can be represented exactly is of the form: 
 

Significant digits × base exponent 
 
The term floating point refers to the fact that the radix point (decimal  point,  or,  more  commonly  in  computers,  binary 
point) can "float"; that is, it can be placed anywhere relative to the significant digits of the number. This position is indicated 
separately in the internal representation, and floating-point representation can thus be thought of as a computer realization of   
scientific   notation.   Over   the   years,   several   different floating-point representations have been used in computers; 
however,   for   the   last   ten   years   the   most   commonly encountered representation is that defined by the IEEE 754 
Standard. 
The  advantage  of  floating-point  representation  over  fixed- point (and integer) representation is that it can support a much 
wider range of values. For example, a fixed-point representation that has seven decimal digits with two decimal 
places, can represent the numbers 12345.67, 123.45, 1.23 and so  on,  whereas a  floating-point representation (such as  the 
IEEE 754 decimal32 format) with seven decimal digits could in  addition  represent  1.234567,  123456.7,  
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0.00001234567, 
1234567000000000,  and  so  on.  The  floating-point  format needs slightly more storage (to encode the position of the radix 
point), so when stored in the same space, floating-point numbers  achieve  their  greater  range  at  the  expense  of precision. 
The speed of floating-point operations is an important measure of performance for computers in many application domains. 
It is measured in FLOPS. 
 

 
 

Figure  1:  IEEE  754  Single  Precision  and  Double Precision Floating Point Format 
 

IEEE 754 STANDARD FLOATING POINT MULTIPICATION ALGORITHM 
A brief  overview of  floating  point  multiplication  has  been explained below [5-6]. 

 Both sign bits S1, S2   are need to be Xoring together, then the result will be sign bit of the final product. 
 Both the exponent bits E1, E2  are added together, then subtract bias value from it. So, we get exponent field of the 

final product. 
 Significand bits Sig1    and Sig2    of both the  operands are multiply including their hidden bits. 
 Normalize the product found in step 3 and change the exponent   accordingly.   After   normalization,   the leading 

“1 “will become the hidden bit. 
Above  algorithm  of  multiplication  algorithm  is  shown  in Figure 2. 
 

 
 

Figure  2:  IEEE754  SP  FP  and  DP  FP  Multiplier Structure, NE: Normalized exponent, NS: Normalized Significand 
 

IEEE-754 standard is s standard representation established by IEEE and widely used standard for floating point computation. 
Single precession floating point represents computer format and it occupies 32-bits in a computer memory and represents 
a wide range of values by using a floating point. In IEEE 754- 
2008, the 32-bit with base 2 formats [2][6] is referred as single precision or binary 32. 
The standard basically has four types and they are 

 Arithmetic format: it is a set of binary and decimal floating point numbers which has finite numbers that 
contains  signed zero, subnormal and infinite numbers and special value called” not a number”(NaN). 

 Interchange format: it is a bit string or encodings that  are mainly used to exchange floating point data in a 
compact and efficient form. 

 Rounding rules: properties should be satisfied while doing arithmetic  operations  and  conversion  of  any   
numbers  on arithmetic formats. 

 Exception handling: It indicates any exceptional conditions like overflow, underflow etc., while doing operations. 
 
Some other computer representations for non-integral numbers 
Floating-point representation, in particular the standard IEEE format, is by far the most common way of representing an 
approximation to real numbers in computers because it is efficiently handled in most large computer processors. However, 
there are alternatives: 
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 Fixed-point representation uses integer hardware operations controlled by a software implementation of a specific 
convention about the location of the binary or decimal point, for example, 6 bits or digits from the right. The 
hardware to manipulate these representations is less costly than floating- point   and   is   also   commonly   used   to   
perform   integer operations. Binary fixed point is usually used in special- purpose applications on embedded 
processors that can only do integer arithmetic, but decimal fixed point is common in commercial applications. 

 Binary-coded decimal is an encoding for decimal numbers in which each digit is represented by its own binary 
sequence. 

 Logarithmic number systems represent a real number by the logarithm of its absolute value and a sign bit. The value 
distribution is similar to floating-point, but the value-to- representation curve, i. e. the graph of the logarithm 
function, is smooth (except at 0). Contrary to floating-point arithmetic, in a logarithmic number system 
multiplication, division and exponentiation are easy to implement but addition and subtraction are hard. 

 Where greater precision is desired, floating-point arithmetic can be implemented (typically in software) with 
variable- length significands (and sometimes exponents) that are sized depending on actual need and depending on 
how the calculation proceeds. This is called arbitrary-precision arithmetic. 

 Some numbers (e.g., 1/3 and 0.1) cannot be represented exactly in binary floating-point no matter what the 
precision. Software packages that perform rational arithmetic represent numbers as fractions with integral 
numerator and denominator, and can therefore represent any rational number exactly. Such packages generally need 
to use "bignum" arithmetic for the individual integers. 

 Computer algebra systems such as Mathematica and Maxima can often handle irrational numbers like or 31/2 in a 
completely "formal" way, without dealing with a specific encoding of the significand. Such programs can evaluate 
expressions like " " exactly, because they "know" the underlying mathematics. 

 
Ieee-754 Floating Point Format 
IEEE is a technically used standard followed by many hardware and software implementation. Single precision floating point 
standard represents 32bits (4bytes) in computer number format, most significant bit will start from left this single precision is 
having three basic components sign, exponent and mantissa sign bit width is 1 bit, exponent of width is 8bits and mantissa of 
24 bits out of which 23 bits are explicitly stored [6] and 1 bit is implicitly stored, sign bit is used represent sign of floating 
point number where sign(s=o positive numbers=1 negative number) 
The Number representation of single precession [9]. Value = (-1) s *2E-127 * 1.M (normalized) when E>0 S= sign bit (0 for 
positive, 1 for negative) e=unbiased exponent; e=E-127(bias) E=exponent it can be signed or unsigned integer, 8-bit signed 
integer it ranges from128 - = ݅ܧ to 127= ݔܽܧ(2’compliment) and for unsigned it ranges 
from ݁݅ =0 to 255= ݔܽܧ which is the accepted biased form in IEEE 754 single precession. In this exponent with value 127 
represents actual zero. The true mantissa will have 23 fraction bits to the right of binary point and implicit to left of binary 
point with value 1unless exponent bit is stored with zeros. In memory we can see only 23 fraction bits in mantissa even 
though it has 24bit.If E>0 and E. 
 
Representable numbers, conversion and rounding 
By their nature, all numbers expressed in floating-point format are rational numbers with a terminating expansion in the 
relevant base (for example, a terminating decimal expansion in base-10,   or   a   terminating   binary   expansion   in   base-
2). 
Irrational  numbers,  such  as  π or  √2, or non-terminating rational numbers, must be approximated. The number of digits (or 
bits) of precision also limits the set of rational numbers that  can  be  represented  exactly.  For  example,  the  number 
123456789 clearly cannot be exactly represented if only eight decimal digits of precision are available. When a  number  is 
represented  in  some  format  (such  as  a character string) which is not a native floating-point representation supported in a 
computer implementation, then it will require a conversion before it can be used in that implementation. If the number can be 
represented exactly in the floating-point format then the conversion is exact. If there is not an exact representation then the 
conversion requires a choice of which floating-point number to use to represent the original value. The representation chosen 
will have a different value to the original, and the value thus adjusted is called the rounded value. 
Whether or not a rational number has a terminating expansion depends on the base. For example, in base-10 the number 1/2 
has a terminating expansion (0.5) while the number 1/3 does not (0.333...). In base-2 only rationals with denominators that 
are powers of 2 (such as 1/2 or 3/16) are terminating. Any rational with a denominator that has a prime factor other than 2 
will have an infinite binary expansion. This means that numbers which appear to be short and exact when written in decimal 
format may need to be approximated when converted to binary floating-point. For example, the decimal number 0.1 is not 
representable in binary floating-point of any finite precision; the exact binary representation would have a "1100" sequence 
continuing endlessly: 
e = −4; s = 1100110011001100110011001100110011..., where,  as  previously,  s  is  the  significand  and  e  is  the 
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exponent. 
When rounded to 24 bits this becomes e = −4; s = 110011001100110011001101, 
which   is   actually   0.100000001490116119384765625   in decimal. 
As a further example, the real number π, represented in binary as an infinite series of bits is 
 
11.00100100001111110110101010001000100001011010001 10000100011010011... but is 11.0010010000111111011011 
when approximated by rounding to a precision of 24 bits. In binary single-precision floating-point, this is represented as s = 
1.10010010000111111011011 with e = 1. 
This has a decimal value of 3.1415927410125732421875, whereas a more accurate approximation of the true value of π 
Is 3.1415926535897932384626433832795... 
 
The result of rounding differs from the true value by about 0.03 parts per million, and matches the decimal representation of 
π in the first 7 digits. The difference is the discretization error and is limited by the machine epsilon. 
The arithmetical difference between two consecutive representable floating-point numbers which have the same 
exponent is called a unit in the last place (ULP). For example, if there is no representable number lying between the 
representable numbers 1.45a70c22hex and 1.45a70c24hex, the ULP is 2×16−8, or 2−31. For numbers with an exponent of 0, 
a ULP is exactly 2−23 or about 10−7 in single precision, and about 10−16 in double precision. The mandated behavior of 
IEEE-compliant hardware is that the result be within one-half of a ULP. 
 
Literature Review 
Soumya  Havaldar  et  al. [1],  gives an FPGA Based High Speed IEEE-754 Double Precision Floating Point Multiplier 
Using Verilog. This paper has implemented DPFP Multiplier using parallel Adder. A high speed floating point double 
precision multiplier is implemented on a Virtex-6 FPGA. In addition, the proposed design is compliant with IEEE-754 format  
and  handles  over  flow,  under  flow,  rounding  and various exception conditions. The design achieved the operating  
frequency of 414.714  MHz with  an  area  of 648 slices. 
 
Ragini Parte et al. [2], IEEE point number-crunching has an immense application in DSP, advanced PCs, robots because of 
its capacity to speak to little numbers and huge numbers and in addition marked numbers and unsigned numbers. 
Disregarding unpredictability included in gliding point number juggling, its usage is expanding step by step. Here we break 
down the impacts of utilizing three unique sorts of adders while figuring the single accuracy and twofold exactness skimming 
point increase. We additionally exhibit the increase of significand bits by disintegration of operands strategy for IEEE 754 
standard. 
 
Ross Thompson et al. [3], IEEE-754 determines trade and number  juggling  positions  also,  routines  for  paired  and 
decimal drifting point number juggling in PC programming world. The execution of a skimming point framework utilizing 
this standard should possible completely in programming, or in equipment, or in any blend of programming and equipment. 
This venture propose VHDL execution of IEEE - 754 Floating point unit .In proposed work the pack, unload and adjusting 
mode was actualized utilizing the VHDL dialect and reenactment was checked. 
In this proposition work, DPFP Multiplier alongside SPFP Multiplier has been actualized with four ordinary Adders (PA, 
CSKA, CSA, and CSABEC). Think about their Results and CSA is known not the speediest snake among every single 
customary viper. Be that as it may, CSA involves more territory as it has two parallel circuits to include the same bits yet 
with diverse convey data. As CSA figures the whole without  sitting  tight  for  the  transitional  conveys  to  spread stage by 
stage. Finally it is the obligation of multiplexer to pick and give the last right yield. CSABEC is an adjusted adaptation of 
CSA in  which  one of the  parallel circuits  is supplanted   by   the   arrangement   of   Binary   to   Excess-1 Converters 
circuit (BECs). It is turned out to be an awesome way to deal with decrease the territory. 
 
Different Types of Adder 
 
Parallel Adder 
Parallel adder can add all bits in parallel manner i.e. simultaneously hence increased the addition speed. In this adder 
multiple full adders are used to add the two corresponding bits of two binary numbers and carry bit of the previous adder. It 
produces sum bits and carry bit for the next stage adder. In this adder multiple carry produced by multiple adders are 
rippled, i.e. carry bit produced from an adder works as one of the input for the adder in its succeeding stage. Hence 
sometimes it is also known as Ripple Carry Adder (RCA). Generalized diagram of parallel adder is shown in figure 3. 
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Figure 3: Parallel Adder (n=7 for SPFP and n=10 for DPFP) 
 
An n-bit parallel adder has one half adder and n-1full adders if the last carry bit required. But in 754 multiplier’s exponent 
adder, last carry out does not required so we can use XOR Gate instead of using the last full adder. It not only reduces the 
area  occupied  by  the  circuit  but  also  reduces  the  delay involved in calculation. For SPFP and DPFP multiplier’s 
exponent adder, here we Simulate 8 bit and 11 bit parallel adders respectively as show in figure 4. 
 

 
 

Figure 4: Modified Parallel Adder (n=7 for SPFP and n=10 for DPFP) 
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Carry Skip Adder 
This adder gives the advantage of less delay over Ripple carry adder. It uses the logic of carry skip, i.e. any desired carry can 
skip  any  number  of  adder  stages.  Here  carry  skip  logic circuitry uses two gates namely “and gate” and “or gate”. Due to 
this fact that carry need not to ripple through each stage. It gives improved delay parameter. It is also known as Carry bypass  
adder.  Generalized  figure  of  Carry  Skip  Adder  is shown in figure 5. 

 
 

 
Figure 5: Carry Skip Adder 

 
Carry Select Adder 
Carry select adder uses multiplexer along with RCAs in which the carry is used as a select input to choose the correct output 
sum bits as well as carry bit. Due to this, it is called Carry select adder. In this adder  two RCAs are used to calculate the sum  
bits  simultaneously  for  the  same  bits  assuming  two different carry inputs i.e. ‘1’  and ‘0’. It is the responsibility of 
multiplexer to choose correct output bits out of the two, once the correct carry input is known to it. Multiplexer delay is 
included in this adder. Generalized figure of Carry select adder is shown in figure 3.9. Adders are the basic building blocks of 
most of the  ALUs (Arithmetic logic  units) used in Digital signal processing and various other applications. Many types of 
adders are available in today’s scenario and many more are developing day by day. Half adder and Full adder are the two 
basic types of adders. Almost all other adders are made with the different arrangements of these two basic adders only. Half 
adder is used to add two bits and produce sum and carry bits whereas full adder can add three bits simultaneously and 
produces sum and carry bits. 

 
 

Figure 6: Carry Select Adder 
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Carry Select Adder with Binary to Excess-1Converter (CSABEC) 
The basic design of CSA has two parallel and same type of circuits of RCA (Ripple Carry Adder) which add the same bits 
but  with  different  carry  inputs.  In  this  paper  we  have introduced a modified version of CSA with the objective to reduce  
area  occupied  by the  circuit  and  delay involved  in calculation. In this circuit, one of the parallel circuit of CSA is replaced 
be Binary to Excess-1 Converter (BEC). We have implemented these adders in exponent addition of IEEE 754 floating point 
multiplication. 8 bit, 11 bit and 3 bit CSABEC adders has been shown in figure 5 [a], [b] and [c] respectively. 
 

 
(a) 8 bit CSABEC 

 

 
(b) 11 bit  CSABEC 

 

 
(c) 3 bit CSABEC 

 
Figure 5 : Carry Select Adder Binary to Excess-1 Conveter 
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FIGURE 7: (b)n bit PAD 1 (n=7 and n=10 for 
 

 
 

(a) 8 bit MCBL 
 

 
FIGURE 6 : Carry Select Adder with Common Boolean 

 
Manju-et al explains 16-bit Carry Select Adder with Common Common Boolean Logic (CBL), here we have proposed a 
new adder and call it as Modified Common Boolean Logic Adder (PAD 1). In this adder as shown in figure,  we have 
basic building block of a XOR Gate, a AND Gate, a OR Gate, an inverter and two 2:1 multiplexers. For every two bit 
addition, required so we need 8 such blocks. We can understand a single block in two parts, a sum bit generator part and a 
carry bit generator part as shown in figure 6(a). As the carry out of last bit is not required, we can remove the carry 
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generator part of the last block used. It not only reduces the gate count but also reduces the delay involved in calculation. 
Likewise in DPFP Multiplier 11 blocks are applied, last block only with sum bit generator. This adder recognized as PAD 
1 in this paper [5]. Detailed structure of CBL has been shown in figure 7 [a] 
 
Proposed Adder 2 (PAD 2) 
Kogge-Stone Adder has named after Peter M. Kogge and Harold S. Stone who has proposed this adder. It is also known by 
the name parallel prefix adder. This adder provides carry signal in very less time [6]. We have proposed an efficient design of 
Kogge-stone adder  which  shows  very significant reduction in area occupied and delay involved in summation. Eventually, 
proposed KSA provides very efficient method to calculate exponent bits in IEEE 754 multiplication. We have introduced as 
Proposed Adder 2 (PAD2), which uses the logic of Kogge-stone adder. We have designed this adder by using cascaded 
arrangement of half adders and XOR Gates as shown in figure [8]. We have simulated a 8-bit KSA for IEEE 754 SPFP 
multiplication and a 11-bit KSA for IEEE 754 DPFP multiplication. 
For exponent addition in IEEE 754 multiplication, we have checked the results of applying conventional adders, CSA and its 
modified versions (CSABEC) .Also we have checked the performances of PAD 1 and PAD 2 which has been proven to be 
the better options among all. Multiplication of Mantissa bits has been done with the splitting off the operands method 
because of the large size of the Mantissa bits. 
 

 
 

FIGURE 8: (b) PAD1 (n=7 for SPFP and n=10 for DPFP) 
 

Significand Bit Calculation 
As per the format defined by IEEE 754, significand bits of SPFP and DPFP are 23 bits and 52 bits which are the normalized  
bits  and  excludes  the  initial  ‘1’  known  as  the hidden bit. While calculating the resultant significand bits of the 
multiplication of two SPFP or DPFP numbers, significand bits needs to multiplied but considering the hidden one along with 
the significand bits. So now the significand bits of SPFP and DPFP becomes 24 bits and 53 bits respectively. This large size 
of Mantissa bits has made the multiplication procedure more complex. Here we use the technique of operand decomposition 
to reduce the complexity and ensure the accuracy.  24  and  53  bits  are  need  to  be  break  down  into groups. Each group of 
the first operand is multiplied with each one  group  of  the  other  operand.  Let  the  first  operand  is grouped into n groups 
and second operand is grouped into m groups then eventually we get nm multiplication terms which are the partial product 
terms of the final multiplication of the significant  bits. These  partial product terms  have to added together very carefully by 
shift and add method. Shifting has to done according to which group of the first operand is multiplied by which group of the 
second operand. Final multiplication  resultant  bits  are  of size  48  and  106-bits  of SPFP   and   DPFP   respectively.   
These   bits   need   to   be normalized first so that we get the least most ‘1’ which will become the hidden bit and not appear 
in the result shown in the IEEE 754 floating point formats. Such a long size of the multiplication result makes it unsuitable to 
store in IEEE 754 floating  point  format,  so  now these  bits  are  truncated  and round off to 23 bits and 52 bits. 
 
Proposed Design 
In  IEEE754  standard  floating  point representation,  8  bit Exponent field  in  single  precision  floating  point  
(SP  FP) representation and 11 bit in double precision floating point (DP FP) representation   are need to add with another 8 
bit exponent and 11 bit exponent respectively, in order to multiply floating point numbers represented in IEEE 754 standard 
as explained earlier. Ragini et al. [10] has used parallel adder for adding   exponent   bits   in   floating   point   multiplication 
algorithm. We proposed the use of 8-bit modified CSA with dual RCA and 8-bit modified CSA with RCA and BEC for 
adding the exponent bits. We have found the improved area of 8-bit modified Carry select adder with RCA and BEC over the 
8-bit modified CSA with dual RCA. 
 
Sign bit calculation 
To calculate the sign bit of the resultant product for SP FP and DP FP multiplier, the same strategy will work. We just need to 
XOR  together  the  sign  bits  of  both  the  operands.  If  the resultant bit is ‘1’, then the final product will be a negative 
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number. If the resultant bit is ‘0’, then the final product will be a positive number. 
 
Exponent bit calculation 
Add the exponent bits of both the operands together, and then the bias value (127 for SPFP and 1023 for DPFP) is subtracted 
from  the  result  of  addition.  This  result  may  not  be  the exponent bits of the final product. After the significand 
multiplication, normalization has to be done for it. According to the normalized value, exponents need to be adjusted. The 
adjusted  exponent  will  be  the  exponent  bits  of  the  final product. 
 
Significand bit calculation 
Significand bits including the one hidden bit are need to be multiply,  but  the  problem  is  the  length  of  the  operands. 
Number of bits of the operand will become 24 bits in case of SP FP representation and it will be 53 bits in case of DP FP 
representation, which will result the 48 bits and 106 bits product value respectively. In this paper we use the technique of 
break up the operands into different groups then multiply them. We get many product terms, add them together carefully by 
shifting them according to which part of one operand is multiplied by which part of the other operand. We have decomposed 
the significand bits of both the operands ain four groups. Multiply each group of one operand by each group of second 
operand. We get 16 product terms. Then we add all of them together very carefully by shifting the term to the left according 
to which groups of the operands are involved in the product term. 
 
Simulation Result 
All the designing and experiment regarding algorithm that we have mentioned in this paper is being developed on Xilinx 6.2i 
updated version. Xilinx 6.2i has couple of the striking features such as low memory requirement, fast debugging, and low 
cost.   The latest release of  ISETM  (Integrated   Software Environment) design tool provides the low memory requirement  
approximate  27  percentage  low.  ISE  6.2i  that provides advanced tools like smart compile  technology with better  usage  
of  their  computing  hardware  provides  faster timing closure and higher quality of results for a better time to designing 
solution. 
These designs were compared with IEEE-754 floating point multiplier architecture proposed by Ragini et al. [2] to show for 
the improvements obtained. 
So   Ragini   et   al.   [2]   architecture   is   best   in   all   these architectures. Implementing the Ragini et al. [2], proposed 
architecture IEEE-754 floating point design has been captured by VHDL and the functionality is verified by RTL and gate 
level simulation. To estimate the number of slice, number of 4-i/p LUTs and maximum combinational path delay (MCPD). 
By using this technique of break up the operands into different groups then multiply them I reduce all parameter compare to 
my base paper. 
 
Conclusion 
IEEE754 standardize two basic formats for representing floating point numbers namely, single precision floating point and 
double precision floating point. Floating point arithmetic has vast applications in many areas like robotics and DSP. Delay 
provided and area required by hardware are the two key factors which are need to be consider Here we present single 
precision  floating  point  multiplier  by  using  two  different adders namely modified CSA with dual RCA and modified 
CSA with RCA and BEC. 
Among all two adders, modified CSA with RCA and BEC is the least amount of Maximum combinational path delay 
(MCDP). Also, it takes least number of slices i.e. occupy least area among all two adders. 
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